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Field theoretic calculation of renormalized viscosity, renormalized resistivity, and energy fluxes
of magnetohydrodynamic turbulence
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A self-consistent renormalization scheme has been applied to nonhelical magnetohydrodynamic~MHD!
turbulence with zero cross helicity. Kolmogorov’s 5/3 power law has been shown to be a consistent solution for
d>dc'2.2. For Kolmogorov’s solution, both renormalized viscosity and resistivity are positive for the whole
range of parameters. Various cascade rates and Kolmogorov’s constant for MHD turbulence have been calcu-
lated by solving the flux equation to first order in the perturbation series. We find that the magnetic energy
cascades forward. The Kolmogorov constant ford53 does not vary significantly withr A and is found to be
close to the constant for fluid turbulence.
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The statistical theory of magnetohydrodynamic~MHD!
turbulence is one of the important problems of current
search. The quantities of interests in this area are the en
spectrum, cascade rates, intermittency exponents, etc. In
article we analytically compute the renormalized viscos
renormalized resistivity, and cascade rates using field th
retic techniques.

The incompressible MHD equation in Fourier space
given by

~2 iv1nk2!ui~ k̂!52
i

2
Pi jm

1 ~k!E dp̂@uj~ p̂!um~ k̂2 p̂!

2bj~ p̂!bm~ k̂2p̂!#, ~1!

~2 iv1lk2!bi~ k̂!52 iPi jm
2 ~k!E dp̂@uj~ p̂!bm~ k̂2 p̂!#,

~2!

kiui~k!50, ~3!

kibi~k!50, ~4!

whereu and b are the velocity and magnetic field fluctu
tions, respectively,n andl are the viscosity and the resistiv
ity, respectively, andd is the space dimension. Also,

Pi jm
1 ~k!5kj Pim~k!1kmPi j ~k!, ~5!

Pim~k!5d im2
kikm

k2
, ~6!

Pi jm
2 ~k!5kjd im2kmd i j , ~7!

k̂5~k,v!, dp̂5dpdv/~2p!d11. ~8!

The energy spectra for MHD,Eu(k) andEb(k), are still
under debate. Kraichnan@1# and Iroshnikov@2# first gave the
phenomenology of steady-state, homogeneous, and isot
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MHD turbulence, and proposed that the spectrum is prop
tional to k23/2. Later Marsch@3#, Matthaeus and Zhou@4#,
and Zhou and Matthaeus@5# proposed an alternative phe
nomenology in which the energy spectra are proportiona
k25/3, similar to Kolmogorov’s spectrum for fluid turbulence
Current numerical@6–8# and theoretical@9–11# work sup-
ports Kolmogorov-like phenomenology for MHD turbu
lence. In the present paper we show that Kolmogorov’s sp
trum (}k25/3) is a consistent solution of the renormalizatio
group ~RG! equation of MHD turbulence.

Forster et al., DeDominicis and Martin, Fournier an
Frisch, and Yakhot and Orszag@12# applied the RG tech-
nique to fluid turbulence. They considered external forc
and calculated renormalized parameters: viscosity, noise
efficient, and vertex. McComb@13# instead applied a self
consistent RG procedure; here the energy spectrum was
sumed to be Kolmogorov’s power law, and the renormaliz
viscosity was computed iteratively. For MHD turbulenc
Fournieret al., Camargo and Tasso, and Liang and Diamo
@14# employed the RG technique on similar lines as that
Forsteret al. @12#. In this article we will apply McComb’s
self-consistent technique to MHD turbulence. Earlier Verm
@9# did a self-consistent calculation and showed that
mean magnetic field gets renormalized, and the Kolmogo
power law is a consistent solution of the MHD RG equatio
Here we will carry out the renormalization of viscosity an
resistivity.

For simplicity of the calculation we assume that the me
magnetic field is absent. This allows us to assume the tu
lence to be isotropic to a reasonable approximation. In
presence of a mean magnetic field, turbulence becomes
isotropic; this issue has been studied by Sridhar and G
reich @10# and Goldreich and Sridhar@11#. In addition to the
above assumption, we also take cross helicity (2u•b), mag-
netic helicity (a•b), and kinetic helicity (u•v) to be zero,
wherea is the magnetic vector potential, andv is the vor-
ticity.

In our RG procedure the wave number range (kN ,k0) is
divided logarithmically intoN shells. We carry out the elimi-
nation of the first shellk.5(k1 ,k0) and obtain the modified
MHD equation fork,5(kN ,k1). This process is continued
©2001 The American Physical Society05-1
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for all the shells. The shell elimination is performed by e
semble averaging overk. modes@12,14#. We assume tha
ui

.( k̂), and bi
.( k̂) have Gaussian distributions with ze

mean, whileui
,( k̂) andbi

,( k̂) are unaffected by the averag
ing process. In addition we take

^ui
.~ p̂!uj

.~ q̂!&5Pi j ~p…Cuu~ p̂!d~ p̂1q̂!, ~9!

^bi
.~ p̂!bj

.~ q̂!&5Pi j ~p…Cbb~ p̂!d~ p̂1q̂!. ~10!

Let us denote byn (n) andl (n) the viscosity and resistivity
after the elimination of then shell. To first order of pertur-
bation, we obtain

~2 iv1n (n)k
21dn (n)k

2!ui
,~ k̂!

52
i

2
Pi jm

1 ~k!E dp̂@uj
,~ p̂!um

,~ k̂2 p̂!

2bj
,~ p̂!bm

,~ k̂2 p̂!#, ~11!

~2 iv1l (n)k
21dl (n)k

2!bi
,~ k̂!

52 iPi jm
2 ~k!E dp̂@uj

,~ p̂!bm
,~ k̂2 p̂!#, ~12!

where

dn (n)~k!5
1

~d21!k2Ep̂1q̂5 k̂

D dp

~2p!d

3FS~k,p,q!
Cuu~q!

n (n)~p!p21n (n)~q!q2

2S6~k,p,q!
Cbb~q!

l (n)~p!p21l (n)~q!q2G , ~13!

dl (n)~k!5
1

~d21!k2Ep̂1q̂5 k̂

D dp

~2p!d

3F2S8~k,p,q!
Cbb~q!

n (n)~p!p21l (n)~q!q2

1S9~k,p,q!
Cuu~q!

l (n)~p!p21n (n)~q!q2G ~14!

with Si(k,p,q) as functions ofk,p, andq. Hence, after the
elimination of the (n11)th shell, the effective viscosity an
resistivity will be (n,l)(n11)(k)5(n,l)(n)(k)
1d(n,l)(n)(k).

We solve the above equations iteratively. To simplify, w
replaceC(k) in Eqs. ~13! and ~14! by the one-dimensiona
energy spectrumE(k),

Cuu,bb~k!5
2~2p!d

Sd~d21!
k2(d21)Eu,b~k!, ~15!
02630
-

whereSd is the surface area ofd-dimensional spheres. W
assume thatEu(k) andEb(k) follow

Eu~k!5KuP2/3k25/3, Eb~k!5Eu~k!/r A . ~16!

Regardingn (n) andl (n) , we attempt the following form of
solution:

~n,l!(n)~knk8!5~Ku!1/2P1/3kn
24/3~n,l!~n!

* ~k8! ~17!

with k5kn11k8(k8,1) with the expectation thatn (n)* (k8)
andl (n)* (k8) are universal functions for largen. We numeri-
cally solve forn (n)* (k8) andl (n)* (k8). Our calculations revea
that the solutions ofn (n)* (k8) and l (n)* (k8) converge for all
d.dc'2.2. From this observation we can conclude th
Kolmogorov’s energy spectrum@E(k)}k25/3# is a consistent
solution of the RG equations. Meanwhile, Kraichnan’s 3
energy spectrum andnk25lk2}kB0, whereB0 ~a constant!
is the magnetic field of the large eddies, do not satisfy
renormalization group equations@Eqs. ~13,14!#. Hence
E(k)}k23/2 is not a consistent solution of the RG equation
Our result regarding the nonexistence of a stable RG fi
point for d52 is consistent with the RG calculation of Lian
and Diamond@14#. Refer to Fig. 1 for illustration ofn (n)* (k8)
andl (n)* (k8) for d53 andr A51.

The values of renormalized parameters ford53 and vari-
ousr A are shown in Table I. For larger A , the asymptoticn*
is close to the corresponding value for fluid turbulence,
the asymptoticl* is also comparable ton* . This implies
that in the fluid dominated regime there is a significant m
netic energy flux in addition to the usual Kolmogorov flux
fluid modes. Asr A is decreased,n* increases butl* de-
creases. This trend is seen untilr A'0.25, where the RG
fixed point with nonzeron* andl* becomes unstable, an
the trivial RG fixed point withn* 5l* 50 becomes stable
This result suggests an absence of turbulence forr A below
0.25. This is consistent with the fact that the MHD equatio
become linear in ther A→0 ~fully magnetic! limit.

We can proceed further and compute various casc
rates and Kolmogorov’s constant for MHD using the ren
malized parameters computed above. To compute th
quantities we resort to the energy equations, which
@15,16#

FIG. 1. Plot ofn* (k8) ~solid lines! andl* (k8) ~dashed lines! vs
k8 for d53 and sc50, r A51. Values at various iterations ar
shown by different curves.
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TABLE I. The values ofn* , l* , nuu* , nub* , lbu* , andlbb* for variousr A whend53 andsc50.

r A n* l* Pu.
u,/P Pb.

u,/P Pu.
b,/P Pb.

b,/P Pb,
u,/P K

` 0.38 1 1.53
5000 0.36 0.85 1 3.531024 21.0531024 2.431024 1.331024 1.51
5 0.47 0.82 0.61 0.26 20.050 0.19 0.13 1.51
1 1.00 0.69 0.12 0.39 0.12 0.37 0.49 1.50
0.5 2.11 0.50 0.037 0.33 0.33 0.30 0.63 1.6
0.3 11.0 0.14 0.011 0.36 0.42 0.21 0.63 3.2
0.2 – – – – – – – –
n
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]t
12nk2DCuu~k,t !5

1

~d21!~2p!dd~k1k8!

3E
k81p1q50

dp

~2p!d
@Suu~k8upuq!

1Suu~k8uqup!1Sub~k8upuq!

1Sub~k8uqup!#, ~18!

S ]

]t
12lk2DCbb~k,t !5

1

~d21!~2p!dd~k1k8!

3E
k81p1q50

dp

~2p!d
@Sbu~k8upuq!

1Sbu~k8uqup!1Sbb~k8upuq!

1Sbb~k8uqup!#, ~19!

where

Suu~k8upuq!52Im$@k8•u~q!#@u~k8!•u~p!#%, ~20!

Sbb~k8upuq!52Im$@k8•u~q!#@b~k8!•b~p!#%, ~21!

Sub~k8upuq!5Im$@k8•b~q!#@u~k8!•b~p!#%, ~22!

Sbu~k8upuq!52Sub~puk8uq!. ~23!

Here Im stands for the imaginary part of the argument, a
the above integrals have the constraints thatk81p1q50
(k52k8). The energy equations in the above form we
written by Daret al. @16#, who interpret the termsS(kupuq)
as the energy transfer rate from modep ~second argument o
S) to k ~first argument ofS) with modeq ~third argument of
S) acting as a mediator. This interpretation of energy trans
due to Daret al. @16# is consistent with the earlier formalism

We can derive an expression for the energy transfer rat
energy flux from a wavenumber sphere usingS(k8upuq). The
formula for the energy flux from inside theX sphere (X,) to
the outside of theY sphere (Y.) is

PY.
X,~k0!5E

k.k0

dk

~2p!dEp,k0

dp

~2p!d
^SYX~k8upuq!&,

~24!
02630
d

r

or

whereX andY stand foru or b. In our study we assume tha
the kinetic energy is forced at small wave numbers, and
turbulence is steady. We calculate the above fluxes ana
cally to leading order in the perturbation series using
same procedure as that of Leslie@17#. The flux is calculated
using Eq.~24! by taking the ensemble average ofSYX. The
expression for̂ Sbb(kupuq)& is

^Sbb~kupuq!&5E
2`

t

dt8@T4~k,p,q!Gbb~k,t2t8!

3Cbb~p,t2t8!Cuu~q,t2t8!

1T8~k,p,q!Gbb~p,t2t8!

3Cbb~k,t2t8!Cuu~q,t2t8!

1T10~k,p,q!Guu~q,t2t8!Cbb~k,t2t8!

3Cbb~p,t2t8!#, ~25!

whereTi(k,p,q) are functions of wave vectorsk,p, andq.
The expressions for other transfer rates^Suu(kupuq)&,
^Sub(kupuq)&, and ^Sbu(kupuq)& look similar. In the above
formulas we substitute Kolmogorov’s spectrum@Eqs. ~16!#
for the energy spectrum, and the following expression for
effective viscosity and resistivity:

~n,l!~k!5~Ku!1/2P1/3k24/3~n* ,l* ! for k>kn .
~26!

Following the same procedure as Leslie@17#, we obtain
the following nondimensional form of the equations:

PY.
X,

P
5

4Sd21

~d21!2Sd

~Ku!3/2E
0

1

dv ln~1/v !

3E
12v

11v
dw~vw!d22~sina!d23FY.

X, ~27!

where the integralsFY.
X, are functions ofv, w, n* , andl* .

After a bit of manipulation we can obtainPY.
X,/P and the

constantKu. In addition we can also obtain Kolmogrov’
constantK for the total energy,

E~k!5KP2/3k25/3, ~28!

using K5Ku(11r A
21). The values ofPY.

X,/P and K for d
53 and variousr A are listed in Table I.
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The entries in Table I show that the cascade ratesPb.
u, ,

Pb.
b, , Pb,

u, , Pu.
b, are approximately of the same order forr A

between 0.5 and 1, but the fluxPu.
u, is rather small. The sign

of Pb.
b, is positive, indicating that the magnetic energy M

cascades forward, that is, from large length scales to s
length scales. The magnetic energy thus appearing at s
length scales will be lost due to resistive dissipation, and
large-scale magnetic field is maintained by thePb,

u, flux. The
Kolmogorov constantK is approximately constant and
close to 1.6, the same as that for fluid turbulence (r A5`),
for all r A greater than 0.5.

To summarize, we employed a self-consistent RG sche
for MHD turbulence and found that Kolmogorov’s 5/3 pow
law is a consistent solution of the RG equations ford>dc
'2.2. For Kolmogorov’s solution, the renormalized visco
ity and resistivity have been calculated, and they are foun
be positive. Ford53, variation ofn* andl* with r A shows
some interesting features. For larger A , n* is the same as
that for fluid turbulence, butl* is also nonzero, in fact large
thann* . As r A is decreased,n* increases butl* decreases
until r A'0.25 at which value turbulence disappears.
02630
all
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e
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Using the flux equations we have obtained various flu
and Kolmogorov’s constantK. For d53, K does not vary
significantly with the variation ofr A , and it is close toK for
fluid turbulence. We find that the cascade rate from the m
netic sphere to outside the magnetic sphere (Pb.

b,) is posi-
tive, a result consistent with the numerical results of D
et al. @16#.

In this paper we have restricted ourselves to nonhel
turbulence. Helical MHD turbulence is very important esp
cially in the light of enhancement of magnetic energy~dy-
namo!. However, the physics of helical turbulence is mo
complex with the appearance of an inverse cascade of m
netic helicity, etc. The field theoretic analysis for this ca
will be taken up later. Recent studies show that the m
magnetic field has a strong effect on the energy spectr
and it induces anisotropy. A full-fledged field theory calcu
tion in the presence of a mean magnetic field is also ne
sary for a clearer picture of MHD turbulence.
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