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Field theoretic calculation of renormalized viscosity, renormalized resistivity, and energy fluxes
of magnetohydrodynamic turbulence
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A self-consistent renormalization scheme has been applied to nonhelical magnetohydrodiviifdic
turbulence with zero cross helicity. Kolmogorov’s 5/3 power law has been shown to be a consistent solution for
d=d.~2.2. For Kolmogorov’s solution, both renormalized viscosity and resistivity are positive for the whole
range of parameters. Various cascade rates and Kolmogorov’'s constant for MHD turbulence have been calcu-
lated by solving the flux equation to first order in the perturbation series. We find that the magnetic energy
cascades forward. The Kolmogorov constantder3 does not vary significantly with, and is found to be
close to the constant for fluid turbulence.
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The statistical theory of magnetohydrodynantdHD) MHD turbulence, and proposed that the spectrum is propor-
turbulence is one of the important problems of current retional to k=32 Later Marsch[3], Matthaeus and Zho[#],
search. The quantities of interests in this area are the energind Zhou and MatthaeUs$] proposed an alternative phe-
spectrum, cascade rates, intermittency exponents, etc. In thi®menology in which the energy spectra are proportional to
article we analytically compute the renormalized viscosity,k=53 similar to Kolmogorov’s spectrum for fluid turbulence.
renormalized resistivity, and cascade rates using field theqrrent numerica[6—8] and theoretica[9—11] work sup-
retic tec_hmques. ) o _ _ ports Kolmogorov-like phenomenology for MHD turbu-

The incompressible MHD equation in Fourier space iSjgnce. In the present paper we show that Kolmogorov's spec-

given by trum (eck ™) is a consistent solution of the renormalization
A i o o group (RG) equation of MHD turbulence.
(—lo+ vkz)ui(k)=—§Pfjrm(k)f dp[u;(p)uyn(k—p) Forster et al, DeDominicis and Martin, Fournier and
Frisch, and Yakhot and Orszdd?2| applied the RG tech-
—bj(f))bm(lz—f))], (1) nique to fluid turbulence. They considered external forcing

and calculated renormalized parameters: viscosity, noise co-
. N . efficient, and vertex. McComb13] instead applied a self-
(—io+\k?)b;(k)= _ipﬁm(k)f dpluj(p)bm(k=p)], consistent RG procedure; here the energy spectrum was as-
2) sumed to be Kolmogorov’s power law, and the renormalized
viscosity was computed iteratively. For MHD turbulence,
kjui(k)=0, (3)  Fournieret al, Camargo and Tasso, and Liang and Diamond
[14] employed the RG technique on similar lines as that of
kibi(k)=0, (4) Forsteret al. [12]. In this article we will apply McComb’s
self-consistent technique to MHD turbulence. Earlier Verma
[9] did a self-consistent calculation and showed that the
mean magnetic field gets renormalized, and the Kolmogorov
power law is a consistent solution of the MHD RG equation.

whereu andb are the velocity and magnetic field fluctua-
tions, respectivelyy and\ are the viscosity and the resistiv-
ity, respectively, andl is the space dimension. Also,

Pﬁm(k)=k,-Pim(k)Jrkai,-(k), (5) Her_e we will carry out the renormalization of viscosity and
resistivity.
Kk For s_implicit_y of the calcu_lation we assume that the mean
Pin(K)=8m— —, (6) ~ magnetic field is absent. This allows us to assume the turbu-
k? lence to be isotropic to a reasonable approximation. In the

presence of a mean magnetic field, turbulence becomes an-

Pijm(K) =K; dim—Kmdij , (7)  isotropic; this issue has been studied by Sridhar and Gold-
reich[10] and Goldreich and Sridhaf1]. In addition to the
k=(k,w), dp=dpdw/(27)i*+L. (8)  above assumption, we also take cross helicity-(®, mag-

netic helicity @-b), and kinetic helicity (- w) to be zero,
The energy spectra for MHIEY(k) andE®(k), are still  wherea is the magnetic vector potential, awalis the vor-
under debate. Kraichndd] and Iroshniko 2] first gave the ticity.
phenomenology of steady-state, homogeneous, and isotropic In our RG procedure the wave number rangg ko) is
divided logarithmically intdN shells. We carry out the elimi-
nation of the first shelk™ = (k; k) and obtain the modified
*Email address: mkv@iitk.ac.in MHD equation fork==(ky,k;). This process is continued
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for all the shells. The shell elimination is performed by en-
semble averaging ovee~ modes[12,14. We assume that

u”(k), and b7 (k) have Gaussian distributions with zero

mean, whileuf(R) and bf(R) are unaffected by the averag-
ing process. In addition we take

(U7 (P)u; (@) =Py (P)CY(p)S(p+q), (9)

(b7 ()b} (@)=Py(P)C*(p)s(p+a). (10
Let us denote by, andX\ ) the viscosity and resistivity

after the elimination of then shell. To first order of pertur-
bation, we obtain

(—iw+ vpk?+ Svmk?)u (k)

+
ijm

_ IEP (k)f dplu; (p)up(k—p)

—b; " (p)by(k—p)], (11)
(—iw+ )\(n)k2+ 5)\(n)k2)b|<(’k)

=—iPrjm<k>fdb[uf(b)bé(k—fm. (12)

where
Sv(m)(K) = (d_ll)kJ;&-l?(Z(j':d
x| S(k,p.a) ,,(n)(p):i(ffm(q)qz
~Se(k.p.a) )\(n)(p);:zi(iin)(qmz] -
O\ (k)= (d—1)k2J6A+&—ﬁ(2d:)d

TR —
P vy (P)P2+ X (ny(A) 92
CUU
+Sy(k,p.0) (@ 1 (14)

Ay (P)P?+ vy ()02

with S;(k,p,q) as functions ok,p, andg. Hence, after the
elimination of the (+1)th shell, the effective viscosity and
resistivity will be @ N) (n+1)(K) = (¥, N) (ny(K)

We solve the above equations iteratively. To simplify, we
replaceC(k) in Egs.(13) and (14) by the one-dimensional
energy spectrunk(k),

2(2m)¢

uu,bb _
CH= 5@

k—(@=DEUD(K), (15)
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FIG. 1. Plot ofv* (k') (solid lineg and\* (k") (dashed linesvs
k' for d=3 and 0.=0, rp,=1. Values at various iterations are
shown by different curves.

where Sy is the surface area af-dimensional spheres. We
assume thaE"(k) andE°(k) follow

EY(k)=KYTI?*% %3, EP(k)=EY(K)/rp.  (16)
Regardingv(,) and\ ), we attempt the following form of
solution:

17

with k=Kk,, 1k’ (k' <1) with the expectation thatzZ‘n)(k’)
and)\Z‘n)(k’) are universal functions for large We numeri-
cally solve forv;, (k") andA{,(k"). Our calculations reveal
that the solutions oir;, (k") and\{, (k") converge for all
d>d.~2.2. From this observation we can conclude that
Kolmogorov's energy spectrufiE(k) =<k ~>?] is a consistent
solution of the RG equations. Meanwhile, Kraichnan's 3/2
energy spectrum angk®= \k2xkBy,, whereB, (a constant

is the magnetic field of the large eddies, do not satisfy the
renormalization group equationfEgs. (13,14]. Hence
E(k)>k*2is not a consistent solution of the RG equations.
Our result regarding the nonexistence of a stable RG fixed
point ford=2 is consistent with the RG calculation of Liang
and Diamond 14]. Refer to Fig. 1 for illustration of/Z‘n)(k’)

and A, (k') for d=3 andr,=1.

The values of renormalized parametersder 3 and vari-
ousr 4 are shown in Table I. For largs,, the asymptotio*
is close to the corresponding value for fluid turbulence, but
the asymptoticA* is also comparable te*. This implies
that in the fluid dominated regime there is a significant mag-
netic energy flux in addition to the usual Kolmogorov flux in
fluid modes. Asr, is decreasedy™ increases buh* de-
creases. This trend is seen untj~0.25, where the RG
fixed point with nonzera’* and\* becomes unstable, and
the trivial RG fixed point withv* =\* =0 becomes stable.
This result suggests an absence of turbulence fobelow
0.25. This is consistent with the fact that the MHD equations
become linear in the,— 0 (fully magnetig limit.

We can proceed further and compute various cascade
rates and Kolmogorov’s constant for MHD using the renor-
malized parameters computed above. To compute these
quantities we resort to the energy equations, which are
[15,16

(2,0) (ny(knk") = (K" M2IT¥3 3w, ) (K
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TABLE I. The values ofv*, \*, »U%, puP  \b¥ and\P® for variousr, whend=3 ando,=0.

ra v* DRI | i1 s/ e/ 1PS/1 e/ K

o 0.38 1 1.53
5000 0.36 0.85 1 38104 —1.05x107% 2.4x10°% 1.3x10% 151

5 047 0.82 0.61 0.26 —0.050 0.19 0.13 1.51

1 1.00 0.69 0.12 0.39 0.12 0.37 0.49 1.50
0.5 211 050  0.037 0.33 0.33 0.30 0.63 1.65
0.3 11.0 014  0.011 0.36 0.42 0.21 0.63 3.26
0.2 - - - - - - - -

whereX andY stand foru or b. In our study we assume that

J
E+2vk2)C“”(k,t)= . ,
(d=1)(2m)"5(k+k’) cally to leading order in the perturbation series using the

same procedure as that of Ledlie/]. The flux is calculated

xf dp [S"(k'|p|g) using Eq.(24) by taking the ensemble average $f*. The
K'+p+q=0(2)¢ expression foKS*P(k|p|q)) is
+S"(k’|glp) +S*°(k’|pla) (SPKpl) ft GUTTo(k p.q) GO (K 1)
pla))= "[Ta(k,p.q A=t
+8"°(k’|qlp)], (18) -
X CPP(p,t—t")C"(q,t—t")
(i+2)\k2>cbb(k t)= ! bh :
at " (d-1)(2m)98(k+k") +Tg(k,p,a)G"(p,t—t")
) X CPP(k,t—t")C"(q,t—t")
bu/,r
“Jy cprg sl PO FTaokpa)GH(q, )Pk t—t)
+S7(K' ol p) + S°°(K’ pla) XC(pt=t)], @9
+S°°(k’|q|p) ], (190  WwhereT;(k,p,q) are functions of wave vectois p, andg.
The expressions for other transfer ratéS"“(k|p|q)),
where (SUP(k|p|q)), and (SPU(k|p|q)) look similar. In the above

Uy , , formulas we substitute Kolmogorov’'s spectryfags. (16)]
S*(k'[plg)=—Im{[k"-u(q)J[u(k")-u(P)I}, (20 for the energy spectrum, and the following expression for the

Sbb(k’|p|q)= Cim{TK - u(@) (k') -b(p) T (21) effective viscosity and resistivity:
) (v, M) (k)= (KYYATY34B(p* A*)  for  k=k,.
S*(k’[pla)=Im{[k’-b(q)I[u(k’)-b(p)]}, (22 (26)
SPUCk’ [plg)=—S"B(p|k’|q). (23 Following the same procedure as LedlieZ], we obtain

) ) the following nondimensional form of the equations:
Here Im stands for the imaginary part of the argument, and

the above integrals have the constraints tkat p+q=0 H$§ 4S,_, 1
— ’ ; ; — uy3/2
(k=—k’). The energy equations in the above form were I > (KY) f dv In(1/v)
written by Daret al. [16], who interpret the termS(k|p|q) (d=1)"Sy 0
as the energy transfer rate from mquésecond argument of 1+v
S) to k (first argument ofS) with modeq (third argument of X L dw(ow)®(sine)?3F3S (27)

S) acting as a mediator. This interpretation of energy transfer
due to Daret al.[16] is consistent with the earlier formalism.

We can derive an expression for the energy transfer rate
energy flux from a wavenumber sphere uss{g§’|p|q). The
formula for the energy flux from inside thesphere X<) to
the outside of the¥ sphere ¥>) is

where the integral&y< are functions oby, w, »*, and\*.

0 . . .

Atter a bit of manipulation we can obtai{=/II and the
constantK". In addition we can also obtain Kolmogrov's
constantk for the total energy,

E(k)=KIT?3 53, (28)

dk d
()= | | svwipla),

kko(27)4) p<ko(277)9 usingK=KY(1+r, ). The values ofl I3=/IT andK for d

(249 =3 and varioug 5 are listed in Table I.
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the kinetic energy is forced at small wave numbers, and the
turbulence is steady. We calculate the above fluxes analyti-
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The entries in Table | show that the cascade r&tgs, Using the flux equations we have obtained various fluxes
RS, MRS, TI2S are approximately of the same order fgr ~ and Kolmogorov's constari. For d=3, K does not vary
between 0.5 and 1, but the fliX< is rather small. The sign significantly with the variation of o, and it is close td< for
of HEi is positive, indicating that the magnetic energy MEﬂu'(_j trbulence. We _fmd that the cas_cade rate fro_m the_ mag-
cascades forward, that is, from large length scales to sm ﬂeuc sphere 1o ou'g3|de the_ magnetic sphdﬂ@io IS post-
length scales. The magnetic energy thus appearing at sm e, a result consistent with the numerical results of Dar

length scales will be lost due to resistive dissipation, and th ?rl] E?\S aper we have restricted ourselves to nonhelical
large-scale magnetic field is maintained by Ihg" flux. The bap

Kolmogorov constanK is approximately constant and is tgrbult_ance. H_eIicaI MHD turbulence is very irr_lportant espe-
close to 1.6, the same as that for fluid turbulencg=() cially in the light of enhan.cement qf magnetic ene(gy-
for all 1 're,ater than 0.5 ’ namo. However, the physics of hell_cal turbulence is more
A great ~ . complex with the appearance of an inverse cascade of mag-
To summarize, we employed a self-consistent RG schem

fetic helicity, etc. The field theoretic analysis for this case
for MHD turbu_lence and fpund that Kolmogorqu 5/3 power will be taken up later. Recent studies show that the mean
law is a consistent solution of the RG equations derd.

. . . magnetic field has a strong effect on the energy spectrum,
~2.2. For Kolmogorov’s solution, the renormalized viscos- 9 g 9y sp

: g and it induces anisotropy. A full-fledged field theory calcula-
ity and resistivity have been calculated, and they are found ton in the presence of a mean magnetic field is also neces-
be positive. Fod= 3, variation ofy* and\* with r , shows

. . . sary for a clearer picture of MHD turbulence.
some interesting features. For largg, v* is the same as

that for fluid turbulence, but* is also nonzero, in fact larger The author thanks J. K. Bhattacharjee for very valuable
thanv*. Asr, is decreasedy* increases but* decreases discussions and ideas. He also thanks G. Dar and V. Eswaran

until r ,~0.25 at which value turbulence disappears. for many insights from numerical results.
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